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Abstract-A variational principle based on the integro-differential form of the linearised Wang Chang- 
Uhlenbeck equation, with general boundary conditions, is used to evaluate the heat conducted through a 
polyatomic gas between parallel plates. The result is an accurate, closed form expression for the heat 
transfer, valid for all degrees of rarefaction, rational in the inverse Knudsen number, and parametrized 
by the thermal accommodation coefficients, the heat capacity of the internal modes, full range moments 
of the Chapman-Enskog solution and half range bracket integrals of the free molecular solution. The 
temperature jump coefftcient is obtained from the high density expansion of the heat flux and is dependent 
on the thermal accommodation coefftcients, the internal heat capacity, and moments of the Chapman- 
Enskog solution. In the limit of vanishing internal specific heat, both the heat transfer and the temperature 

jump reduce to results previously given for the monatomic gas. 
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NOMENCLATURE 

linearized boundary operator 
and boundary kernel respectively 
equation (11) ; 
Chapman Enskog heat conduc- 
tivity solution ; 
kernel of the general boundary 
conditions equation (2) ; 
dimensionless molecular velo- 
city c = <(2WT,)-+; 
internal specific heat per mole- 
cule ; 
total specific heat c, = 3k + ck ; 
internal energy of level i (dimen- 
sional) ; 
molecular velocity distribution 
for particles in level i ; 
absolute Maxwell-Boltzmann 
distribution ; 
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Eucken factor F = ml/pc, ; 
dimensional relative velocity ; 
perturbation of the distribution; 
dimensional scattering cross sec- 
tion ; 
Boltzmann constant ; 
mean free path ; 
Maxwell-Boltzmann distribu- 
tion at the wall temperature ; 
molecular mass ; 
number density at x = 0 ; 
gas pressure at x = 0, p,, = N,kT,; 
gas constant ; 
reflection operator ; 
partition function 

Q = xexp(- EdkTl; 
total heat transfer in x direction 
(dimensional) ; 
wall temperature and tempera- 
ture at x = 0 respectively ; 
wall velocity ; 
peculiar velocity ; 
spatial coordinate ; 
dimensionless coordinate per- 
pendicular to the plates ; 
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collisional relaxation number ; 
thermal accommodation coeffi- 
cients for translational and in- 
ternal energy respectively ; 
variational constants ; 
ratio of specific heats ; 
plate separation (dimensional) ; 
inverse Knudsen number 6 = $11; 
dimensionless internal energy 
si = EiikTo; 
collisional scattering angle ; 
thermal conductivities ; 
gas viscosity ; 
molecular velocity (dimen- 
sional) ; 

mNo; 
temperature perturbation 

z = I(T, - T)/T,(; 
relaxation time for the internal 
degrees of freedom ; 
inverse of the total collision fre- 
quency ; 
solid angle of scattering ; 
temperature jump coefficient. 

INTRODUCTION 

ALTHOUGH the kinetic theory of plane heat 

conduction has been exhaustively treated for a 
monatomic gas [l-5], the corresponding prob- 
lem for a polyatomic gas has received con- 
siderably less attention due to the complexity 
of the molecular collision process and of the 
molecule-wall interaction Most work on the 
polyatomic problem has been concerned with 
the calculation of transport coefficients using the 
Chapman-Enskog procedure on a suitable 
kinetic equation [6,7]. A notable exception 
to this is the work of Hsu and Morse [8-lo] 
who have treated the full boundary value 
problem with a generalization of Maxwell’s 
boundary condition and with suitable models 
of the collision term of the Wang Chang- 
Uhlenbeck equation [ll, 121. The extent of 
numerical computation necessary to achieve 
quantitative results is discouraging. 

In light of recent work on the monatomic 
problem [5], it seems that many of the more 
cumbersome aspects of the problem may be 
eliminated through the use of appropriate 
variational techniques. In fact great generality 
can be obtained from the outset, since there 
need be no restriction to the form of the collision 
operator and the boundary conditions used can 
be quite general In particular, with a variational 
technique based on the integrodifferential form 
of the equation, the heat transfer may be found 
in a closed form which reduces to all known 
limits correctly [5]. Thus it appears that a 
recalculation of the polyatomic heat transfer 
could be useful. 

In the following the boundary value problem 
is formulated for the linearised Wang Chang- 
Uhlenbeck equation [ 131 with general boundary 
conditions and certain formal similarities with 
the corresponding monatomic formulation are 
noted. By exploiting these similarities, the 
solution of the general problem can be shown 
to be equivalent to making a certain quadratic 
functional stationary. For the heat transfer 
problem treated here, the stationary value of this 
functional is related to heat transfer to the 
boundary and can be approximately evaluated 
with great accuracy by using an appropriate 
trial function Explicit expressions are given for 
the heat transfer and the temperature jump 
coefficient which agree with the monatomic 
results previously given in the limit of vanishing 
internal specific heat Furthermore, the expres- 
sion for the heat transfer reproduces correctly 
the free molecular, near free molecular and 
continuum results that are obtained from the 
linearised equation. 

BASIC EQUATIONS AND FORMULATION 

In this section the full boundary value prob- 
lem for the linearised Wang Chang-Uhlenbeck 
equation is formulated with general boundary 
conditions. A dilute gas of spherically symmetric 
polyatomic molecules is considered in some 
region Q of physical space bounded by the 
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surface &J. The molecules are treated semi- 
quantum mechanically in the sense that the 
internal energy of the particles is quantized but 
the translational energy is treated classically. 
To each internal quantum state, with internal 
energy Ei, is assigned a velocity distribution 
function A. The energy Ei is a parameter which 
completely specifies the internal state in this 
approximation. The spatial and temporal evo- 
lution ofA due to collisions is given by [ 131 

- fifj.]s’ I:,! @, 0) dw G 3852 (1) 
where tildes denote dimensional quantities and, 
in standard notation, # is the relative velocity 
before collision, zi is the collision cross section, 
which depends only on 0 and the scattering 
angle 0 = 8. @‘/g# due to the symmetry of the 
molecules, and J, denotes S,(C’J where primes 
indicate post-collisional quantities. This form 
of the equation, due to Wang Chang Uhlenbeck 
and de Boer [13], follows from microscopic 
reversibility of the collisions due to time reversal 
invariance of quantum mechanics in the absence 
of degeneracy. This has been discussed in detail 
by Waldmann [ 14, 151. 

The boundary conditions to be matched to 
equation (1) can be written as [16, 171 

I(< - UO). nIfi(% 0 

=lec!,tj;; (<’ * <)sj(i07 c’)l (c’ - ~0). n 1 M : 

i,&im, (g - ug) . n > 0 (2) 

where a0 denotes the wall velocity at Z,, and n 
is the normal pointing into the gas. For a non- 
porous wall, the positive kernel B,+ (assumed 
to be independent of the state of the gas) is 
normalized : 

c (#_“!.“>O 
Bj_i(r”C)dr= 1 : 

Z~&c%2, (lf’-ucJ.n<O (3) 

thus we may write (c - uO). n = u. R where u 
is the peculiar velocity of the gas as at the wall. 
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The reciprocity of B,,,i is written as 

\a’. nIM,j(<‘)BjA(C+O= (1). nlM,,(<) 

Bi,j(-i: + -5’) :z-,&m:a.n > 0:d.n < 0 

(4) 

and follows also from the time reversal in- 
variance of quantum mechanics in the absence of 
degeneracy, as discussed by KuSEer [18]. A 
consequence of reciprocity and non-porosity 
is that the velocity distribution of a gas in equili- 
brium with the wall is unchanged by collisions 
with the wall Thus, 

I 1) . n ( Mwdt) = 7 l f:; (T~-*T)I~J’ * nIMwj(T’) @I’ ; 

&)&cm; u. n > 0 (5) 

where 

M,i(<)= NJ211 WT,)-*Q; 1 exp 
[ 
- g 

w 

;Qw=xexp -g 
[ 1 (6) s w 

is a Maxwell-Boltzmann distribution with the 
temperature and velocity of the wall 

The kernel Bj_,#’ + r) must be specified by 
the details of the wall interaction at the molecular 
level In the absence of a rigorous theory, various 
specialized assumptions are made ; the most 
common being’Maxwell’s assumption of partial 
diffuse and specular reflection When extended 
to allow for internal degrees of freedom BjY; 
becomes 

r _ 

- 

+ 

ainpn+NwQ; ‘(2~m~)-* exp 
1 

‘A -- 
2WT, - 

(1 - Cri"t)Cr"+Gijlv,(2K4eT,)- ~ 

x exp 
[ 1 -& I-l 

+ t1 - an+)aints[t’ - t + 2n(n- u)] 
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+ (l - an+) (l- Clint) sijd[{’ - C + 2ll 

x (n. @I (7) 

where N, is fixed by the normalization as 
(27@Tw)*, and aint and a,,+ are the thermal 
accommodation coefficients for the internal 
and translational energy respectively. 

If the distribution J can be considered to be a 
small deviation from some basic Maxwell- 
Boltzmann distribution fb, we may write 

where 

fi =f,,Cl + h) 11 hi 11 + l (8) 

foi = No(2nWTo)-~Q~‘e-c’“~ ; c2 = 3?, 
0 

ei=$,Qo=Ce’s (9) 
0 s 

and the constants No and To represent some 
appropriately chosen density and temperature 
of the gas. With this linearization we have 

{.;= N,UI Z&Q 

Lh= c 
jkl 

exp(;$ ‘;)[h; + his - hi - h,,] 

@(g, 0) do dc, 

with the boundary conditions 

h+ = ho + Ah- ~300 IO&a52 

(10) 

Ah- = FJ t.j;,(t’ + ~3 h,(T’) d5’ u.n>O 

Aj+i = [(a. nlfo@3-’ Bj+i(t’ + ~)lur~n~fo,(r’) 

(11) 
and hoi is the known source term 

ho, = 2 S Aj+i({’ + <) d<’ - 1. 
j D .n.<o 

(12) 

By linearizing the kernel A,+ in the small 
parameters [(T, - T,)/T,] and u,,,, the kernel 
A,+ depends only on the parameters of the basic 

distribution foi. As a result, the inhomogeneous 
term can be written as 

where CL is the internal specific heat of the gas 

2 = Qi ’ 1 q-&i . 

It is noted here that the introduction of the 
internal degrees of freedom in this spherically 
symmetric, non-degenerate approximation has 
little effect on the formulation as compared 
to the monatomic problem. The principal 
differences are that now the total energy is a 
collision invariant 

L(c’ + Ei) = 0 (14) 

and the inhomogeneous boundary term now 
contains a term proportional to the internal 
energy. 

THE VARIATIONAL PRINCIPLE 

Recently a variational principle has been used 
in conjunction with the integrodifferential form 
of the linearized Boltzmann equation and general 
boundary conditions which is capable of giving 
extremely accurate results for certain macro- 
scopic quantities of physical interest [5,19]. This 
technique has the further advantage of being 
extremely easy to apply and gives simple, 
closed form results for the quantity in question 
valid throughout the transition regime. The 
principal disadvantage seems to be that the 
technique is limited to problems in which the 
adjoint equation and adjoint boundary con- 

ditions are simply related to the direct equation 
and direct boundary conditions. This latter 
restriction can be removed, however, by con- 
sidering the method of Roussopolous [20-22). 
In the heat transfer problem to be considered 
here the two methods are identical 
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The extension of this technique to the poly- 
atomic problem formulated in the preceding 
section is quite direct In particular, with the 
following inner products defined : 

Kg) = TSdCQorrf e-c'-'ifi(e)gi(c);[f;gl =Jndg(f;g) 

V;g)B = CJdcGi o:nIfi(c)gi(c); 
(15) 

i e.n>O 

[_hglB = Ldstig)B (16) 

we have, for arbitrary functions AZ, c) and 

s(% 4 : 

[R(D - L)f; g] = KRtD - L)gl + [g+.&f-lB 

- [Rg-d+lB (17) 

CARJ; dB = v; ARdB (18) 

where R is the reflection operator 

RJ(Z, c) = Jl?, -c) (19) 

and D = c . (a/i?@ In arriving at equation (17) 
use was made of the self-adjointness of Lin the 
inner product (15) due to the relation [15] 

g’r;(g, e) = $V&‘, 6) (20) 

and the rotational invariance of L, which follows 
from the assumption of spherical symmetry of the 
particles, Equation (18) follows directly from 
reciprocity of the boundary operator and is 
analogous to the result given by Cercignani 
[16, 171. The boundary terms on the right hand 
side of equation (15) appear becausef and g do 
not in general satisfy the boundary conditions. 
The utility of these relations is that the functional 
J(J) defined as 

J(i;) = [R(D - L)h”,K] + [h’ - Ah”- - 2h,, 

Rii-lB (21) 

has the variation 6J given by 

6J = 2[R(D - L)h”&] + 2[&+ - Ah- - h,, 

Rdi-1, (22) 

Thus solving (10) with the boundary conditions 
(11) is equivalent to making J(h) stationary. 
Furthermore the stationary value attained by J 
when i; = h has been shown to be related to 
certain quantities of physical interest [19]. The 
practical use of such a result is that the stationary 
condition 

6J = 0 (23) 

can be used to obtain a “best fit” of adjustable 
parameters in a suitable trial function such that 
the stationary value of J, and thus the macro- 
scopic quantities associated with it, can be 
accurately predicted Since the inhomogeneous 
term of equation (13) differs from the monatomic 
case only in the addition of the internal energy, 
it is clear from [19] that the stationary value of 
J in this case is related to the total heat transfer 
to the body. 

APPLICATION TO PLANE HEAT TRANSFER 

The problem of polyatomic heat transfer 
between parallel plates has been previously 
treated by means of a half-range moment method 
[8] and later using a variational technique in con- 
junction with a suitable kinetic model for the 
polyatomic collision process [9, 101. This latter 
work includes a complete numerical study of the 
boundary value problem including temperature 
and density profiles as well as a parametric 
study of the relaxation properties of the gas and 
a good comparison of the calculated heat 
transfer with experiment [23]. Good agreement 
is found for the heat transfer but the density, 
which is not related to the stationary value of the 
functional used, is less well described It is 
the purpose of the present work to present an 
analytically manageable result for the total 
heat transfer which accurately describes the 
transition regime in an attempt to overcome 
some the inherent numerical complications of 
the previous formulations. Detailed numerical 
evaluation and comparison with experiment will 
not be presented here. 

We consider two parallel, stationary plates 
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in the planes x = + 64 with the temperatures 
Tz = T,( 1 T z) ;z = AT/T, < 1. Neglecting all 
variations in the directions parallel to the 
plates leads to the one dimensional equations: 

dh c --=fi 
xaX 

(24) 

h+=h,,+Ah- x = -isgnc, (25) 

where sgn ( f x2) = f 1 and distance is measured 
in units of the mean free path I and 6 is to be 
interpreted as an inverse Knudsen number based 
on I and the dimensional plate separation In the 
collision term & g$ is non-dimensionalized 
by N,1(2RT,)-? The constants N, and To are 
chosen to be the density and temperature of the 
gas at x = 0, and, in this antisymmetrical 
problem, represent the average density and 
temperature. 

Although the condition on the perturbed 
distribution at the plates is generally given by the 
linearized version of equation (7), in this work 
a slightly different method of introducing 
thermal accommodation coefficients is used, 
based on a recent formulation due to Cercignani 
and co-workers [3, 241. The effects of the 
different forms of the boundary conditions 
have been shown to be slight and probably not 
experimentally detectable in the heat transfer [5]. 
In this formulation it is assumed that the 
perturbed distribution emitted from the wall 
may be written as 

hi+ = y* + z:,(c2 - 2) + & Ei - 2 
( > 

6 
x = --sgnc, 

2 
(26) 

The coefficients are determined by the conserva- 
vation of mass at the solid boundary and by the 
definitions of the accommodation coefficients : 

1 n . Itin ( = \ n . It” ( 

Here ui” is the velocity of the stream approaching 
the wall, @ is the translational energy trans- 
ported into the wall, &” is the corresponding 
outgoing energy flux and & is the translational 
energy that would be carried by an emerging 
stream with the wall temperature. The full 
boundary condition may now be written 

h: = hOi + Ah; 

h,, = z [c(~c~ - 2) + ffint(Ei - c~/k)] 

X 

In the limit a,, = ~l,~ = 1 this gives the correct 
result for diffuse emission. The free molecular 
distribution may be obtained by solving a simple 
integral equation in this planar geometry as 

which is identical to that obtained with 
Maxwell’s assumption. Furthermore the nearly 
free molecular distribution may be obtained by 
Knudsen iteration [l] on equation (24) with 
the free molecular result as the zeroth iterate 
and is given by 

hi=c.J1 k+isgnc,)LhW+hFM-$ 

(c2 - 2, sgn c x Lh? 

Jnk - 7 (Ei - CL/k, sgn Q_.hFM) 
” 

X 
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Now with the total heat transfer defined as and experience has shown that this is also true 

&, = C [fi e’+ ~3 545 

for the full transition regime as well. Thus we 

(31) choose 
i * 

we have, in terms of the inner product (15), + B2ai(C) + B3 

QT, k p&gp7# c, c2 - $ + Et - ; [( )I [ , h -&(,L2)+3& 2 ( 11 &i - - w c, 
tr I”, 

(32) (41) 

;where p0 is the pressure at x = 0. Thus the heat 
transfer to the wall in this limit is and use the stationary condition 6.Z = 0 to 

&,=&E (I +$+Z6) 
obtain a 3 x 3 system of linear equations for the 

6 6 1 (33) coefficients. The inclusion of the accommoda- 
tion coefficients in the trial function enables us 
to retain the correct free molecular solution 

(34) without introducing separate variational con- 
stants for the internal and translational energies. 

z = z-2(hm,LP). (36) 

In the continuum limit the solution to (24) 
is independent of the boundary conditions 
and is given by the Chapman-Enskog theory 
as 

b _ %r CL aint 

2 - Cltr + 2k 2 - tlint 
(35) 

Using equation (41) in (22) leads to the system 

22 _ 
%WG 3 

(37) 

L[u~c)c,] = c, c2 - ; + &i - 2 ( > (38) 

with the auxiliary condition 

(&)c, G) = 0 (39) 

and is related to the total thermal conductivity 
by the relation 

+ 82[$J1(2 - 4,) + 3: (2 - %nJl 

(42.a) 

BI 6[JI(2 - %) + J:(2 - %nJl 

+82{6J2+4 ((I-a,d.J: 
\ 

+(1- 
;k 

aint) JT” 2 1 
+ 83 [2(a,, JI “+ 

= 2t(a,, J, + aint J:) 

+ B2[!i%Jlati + JFad - 2abl 

Now a trial function which contains a linear 
combination of both the free molecular and 
continuum solutions will surely give results for 
the heat transfer which are correct in both limits 

(42.b) 

K&61 1 
(42.~) 
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where we have made the further definitions 

(43.a) 

J; = (43.b) 

J2 = 

Using (32) we obtain the heat transfer, norma- 
lized to free molecular conditions, in terms of 
the variational constants directly from the trial 
function as 

and, after some tedious algebra to obtain the 
coefficients b2 and f13, this becomes 

Q= 
N+6 

N + M6 + PC?* 

where 

N= 
4(J, + J:) 

3 - ,/dF21(J1 + J:) 

-b-l+; 1 (46.a) 

M = 2’ - +Zb(J1 + J;) 

3b2 - JnZ(J, + J:) -- 

(46.b) 
3b 

(46.~) 

[J1(2 - at,) + JT (2 - Cdl2 . (46.d) 

The normalized heat flux given by (45) 
reduces to the correct values in the limits of 
large and small inverse Knudsen number. 
Furthermore the correct initial slope to the heat 
transfer (or the nearly free molecular correction) 
is obtained Thus defining 

s = Fmo$Q 
-+ 

leads to 

Jn 
s=-4-b-1z 

(47) 

in agreement with the result of equation (30). 
In the limit of vanishing internal specific heat 
(CL/~ + 0), equation (45) reduces to the result 
previously given for the monatomic gas. 

THE TEMPERATURE JUMP 

In many practical applications, it is possible 
to extend the range of validity of the continuum 
equations by relaxing the “no slip” condition 
at a solid boundary. In this case it is necessary 
to have a kinetic treatment of the appropriate 
slip coefficients Calculation of these quantities 
for a monatomic gas is reasonably complete, 
but the situation for the polyatomic has been 
less completely treated. It has been shown in a re- 
cent treatment, however, that through a redelini- 
tion of certain inner products and the collisional 
invariants, the results previously developed for 
monatomic gas through use of variational 
principles may be used directly for polyatomic 
gases and gas mixtures [25]. Although in shear 
flow problems it appears the effect of the internal 
degrees of freedom is slight [7], the transport 
of energy between the translational and internal 
modes and the transport of the internal energy 
itself can have a significant effect in problems 
in which a temperature gradient exists with a 
component normal to the solid boundary. 

The temperature jump coefficient d is usually 
defined implicitly through the relation 

(49) 
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where 1 is the mean free path. With this definition 
the coefficient of l/gin an expansion of the ratio 
of Q to its continuum value in powers of #‘is 
simply 26. Thus d is obtained from equation 
(45) as 

b=&(J1 + JT) 
J2 G 

+ J:)’ + y > 
(50) 

where the mean free path has been left arbitrary 
and the terms J,, J:, J, and G have been de- 
lined in equations (43) and (46). From equation 
(40) it is noted that J, and J: may be expressed 
in terms of the translational and internal thermal 
conductivities as 

(51) 

Thus introducing the Eucken factors Ft,, Fint we 
have 

G = F, ’ F; (1 - cr,,) + Fi2,, ; (1 - aint) 
” 

+ Fint l2 - %J12 1 (52) 

F,, = 5 m&t 

PC”’ 
Fin, = -. , 

W” 
F, = F,, -C Fi”t. (53) 

In first Chapman-Enskog approximation, sic) 
is given by 

ai = &(C’ - 5/2) + a,(~~ - c;/k) (54) 

where 

4 4, 1 a, = -------_ 

5 Nok (2 WT,)+’ 

21in* a2 = - T---- c; N,(2 WT,)’ (55) 

so that the integral J, may be evaluated as 

J, = 
[ 
; A;, + 4A.i’., $ (N,k)-’ (2 WT,)- ‘. (56) 

” 1 
Now choosing the mean free path 

(57) 

the temperature slip may be written in terms of 
the Eucken numbers and the internal heat 
capacity as 

where y is the ratio of specific heats Equation 
(58) in conjunction with experimental de- 
terminations of the total Eucken number and 
the translational Eucken number (eg from 
thermal transpiration data [26]), could serve 
as an analytical tool in more accurate determina- 
tions of the thermal accommodation coefficients. 

USE OF A MODEL EQUATION 

Although the results given in equations (45) 
and (46) are completely general, the appearance 
of the half range bracket integral I of equation 
(36) makes it necessary to use a modelled 
collision operator to perform calculations due 
to the complexity of the collision cross sections. 
The hierarchy of models of Hanson and Morse 
[ 121 is capable of describing collisions between 
molecules toarbitrary accuracy with the assump- 
tion of constant collision frequency. It is well 
known that constant collision frequency models 
for monatomic gases in lowest approximation 
fail to give the correct Prandtl number of the 
gas, but that an appropriate definition of the 
mean free path minimizes this discrepancy [4,5]. 
The situation for a polyatomic gas is naturally 
somewhat more complex and it is necessary 
to truncate the expansion of the collision opera- 
tor at the next highest order to describe correctly 
the transport properties, at least in the sense of 
the first Chapman-Enskog approximation. This 
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has been discussed in detail elsewhere [ 12, 271. 
At this level the gas may be described in terms 
of four dimensionless groups. For the heat 
transfer problem these are chosen to be (1) &k 
the dimensionless internal specific heat (2) z, 
the collisional relaxation number (to the defined 
below) (3) the total Eucken number and (4) the 
inverse Knudsen number based on the plate 
separation. Equation (24) can now be rewritten 
as 

where f, is the modelled collision operator 

ahi) = (1, hi) + 5 (2 - 3) 

+C, &i-~ 

( i){ 
2 ' [ ( 32 C,C 2 - Sh hiI 

+ /II- K)$+$); hJ1 

(59) 

(60) 

and, with the experimental relaxation time rR, 
the collision relaxation number has been defined 
as 

Z, = rRirc = 2 pOrR//l (61) 

where z, is chosen to be Q&o in accord with the 
total collision frequency as given by the model 

equation at this level. Further the quantity K is 
given by 

and the mean free path 1 has been chosen in 
terms of the gas viscosity as 

&_ l 
3 po (2W (63) 

The Chapman-Enskog solution is correctly 
given, in first approximation, in terms of the 
model parameters as 

aAc) = a&? - ~) + UZ(Ei - c~lk) (64) 

where 

K+;$I 
3 k z, 

(65) 

(66) 

and are related to the translational and internal 
thermal conductivities. Now the integrals ap- 
pearing in the heat transfer may be explicitly 
computed : 



With these expressions used in equations (46) 
in conjunction with equation (43, the heat 
transfer may be evaluated for arbitrary inverse 
Knudsen number as a function of the collision 
relaxation number, the internal specific heat 
and the total Eucken number of the gas. 
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TRANSFERT THERMIQUE ET SAUT DE TEMPBRATURE DANS UN GAZ 
POLYATOMIQUE 

Rbumk-Afin d’8valuer la chaleur conduite au travers d’un gaz polyatomique entre des plaques parallkles. 
on utilise un pricipe variationnel basi: sur la forme intrCgro-diN&rentielle de l’tquation lintariste de Wang- 
Chang Uhlenbeck avec des conditions aux limites g&&ales. On donne une expression de forme analytique 
prCcise du transfert thermique valable pour tous les degrCs de rartfaction rationnelle en fonction de l’inverse 
du nombre de Knudsen avec pour parambtres les coefficients d’accomodation thermique. la chaleur 
s+cilique des modes internes, les moments de la solution de Chapman Enskog et les intkgrales crochets 
de la solution mol&ulaire!ibre. Le coellicient du saut de temp&ature est obtenu B partir du d&veloppement 
de haute densit& du flux thermique et dtpend des coefficients d’accomodation thermique. de la chaleur 
@cilique interne et des moments de la solution de Chapman Enskog, Dans la limite d’evanouissement 
de la chaleur spCcifique interne, g la fois le transfert thermique et le saut de temptrature se ramenent aux 
rtsultats don&s antkrieurement pour le gaz monoatomique. 

WARMEOBERTRAGUNG UND TEMPERATURSPRUNG 1N EINEM 
MEHRATOMIGEN GAS 

Zusammenfassung-Ein Variationsprinzip, beruhend auf der Integro-Differential-Form der linearisierten 
Wang-Chang-Uhlenbeck-Gleichung mit allgemeinen Randbedingungen. wurde zum Berechnen der 
WSirmeleitung durch ein mehratomiges Gas zwischen parallelen Platten benutzt. Das Ergebnis ist ein 
genauer, geschlossener Ausdruck fiir die WiirmeiibertragunL giiltig fiir alle Verdiinnungsgrade, rational 
in der inversen Knudsenzahl und parametrisiert durch die thermischen Akkommodationskoefflzienten. 
die WiirmekapazitLt der inneren Zustlnde, die Gesamtmomente aus der Chapman-Enskog-L6sung 
und Halb-Bereichs-Stiitzintegrale aus der Lijsung fiir frei bewegliche Molekiile. Der Temperatursprung- 
koefflzient ist gewonnen aus der hohen Dichtezunahme infolge des Wiirmestromes und ist abh&n& 
von den thermischen Akkommodationskoeflizienten. der inneren WLrmekapazitlt und den Momenten 

aus der Chapman-Enskog-L6sung. 
Im Grenzfall des Verschwindens der inneren spezilischen WLrme reduzieren sich die Ergebnisse fiir 

die Wtirmeiibertragung und den Temperatursprung auf die friiher bestimmten Ergebnisse fiir das ein- 
atomige Gas. 

lIEPEHOC TEHJIA kI TEMIIEPATYPHbIm CICAqOH B MHOFOATOMHOM 
l’A3E 

AaaoTaqHsr-flnfl OUeHKI4 KOJIllYeCTBa TenJIa, nepeAaHHOr0 TenJIOnpOBO~HOCTbIO qepe:S 

pa3pemembd ra3, 3aKJHO~iZtHHbIfi MelKAy napaJIJIeJIbHbIMI4 IIJIaCTHHaMH, HCnOJIb3yeTCfl 

BapHaqHOHHblti npMHqlln peUIeHAR JIlJHeapH30BaHHOrO HHTerpO-~I4@@epeHlIMaJIbHOrO ypa- 

BHeHWI %Hb-%Hb-yJIeH6eKa C 06WAMYI rpaHZfYHbIMEl YCJIOBMRMA. nOJIyVeH0 RMpEUKeHHe 

anal noToKa Tenna, cnpaBeAnmoe Am Bcex cTeneHei% pa3pememfl, T.e. HJIH nm6b1x (Kn)-*, 

II cogepHtawee B KaqeCTBe IIapaMeTpOB K03I#l+H~HeHTbl TepMAqeCKOti aKKOMOAaIJAR 

TenJIOeMKOCTb 38 Cqi$T BHyTpeHHHX CTeneHeti CBO6OAbI, nOJIHbIt Ha6op MOMeHTOB @yHKlW 

pacnpeneneam, cornacH0 npouenype perueHm ZIenMeHa-3HcKora, i4 p~fi mTerpanoB 

CTOJIKHOBeHdi. BbIpalrteHIle AJIR TeMnepaTypHOrO CKa'IKa nOJIyYeH0 pa3JIOHEeHEIeM BbIpa- 

IKeHllR AJIFI TenJIOBOrO nOTOKa B pRA II0 IIJIOTHOCTP H 3aBEICMT OT KO@@4IJReHTOB TepMW 

seCKO&? aKKOMORa~W%, TelNIOeMKOCTR 33 CqiiT BHyTpeHHMX CTeneHen CBO6OAbI II MOMeHTOB 

peIUeHlW YenMeHa-aHCKOl-a. B npegene npH CTpeMJIeHIlclTenJIOeMKOCTR 3aC'JiiTBHyTpeHHElX 

cTeneHe$i c~o6o~b1 K ~ynm, BbxpameHm KaK gm TennoBoro KoToKa, TaK II mm Temepa- 

TypHOrO CKaYKa, COBnaAaIOT C aHElJIOFWIHbIMA BbIpaHCeHEiHMI4 B CJIyqae OEHOaTOMHOrO ra3a. 


