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Abstract—A variational principle based on the integro-differential form of the linearised Wang Chang-
Uhlenbeck equation, with general boundary conditions, is used to evaluate the heat conducted through a
polyatomic gas between parallel plates. The result is an accurate, closed form expression for the heat
transfer, valid for all degrees of rarefaction, rational in the inverse Knudsen number, and parametrised
by the thermal accommodation coefficients, the heat capacity of the internal modes, full range moments
of the Chapman-Enskog solution and half range bracket integrals of the free molecular solution. The
temperature jump coefficient is obtained from the high density expansion of the heat flux and is dependent
on the thermal accommodation coefficients, the internal heat capacity, and moments of the Chapman—
Enskog solution. In the limit of vanishing internal specific heat, both the heat transfer and the temperature
jump reduce to results previously given for the monatomic gas.
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NOMENCLATURE

linearized boundary operator
and boundary kernel respectively
equation (11);

Chapman Enskog heat conduc-
tivity solution;

kernel of the general boundar
conditions equation (2);
dimensionless molecular velo-
city ¢ = ERRT,) *;

internal specific heat per mole-
cule;

total specific heat ¢, = 3k + ¢ ;
internal energy of level i (dimen-
sional);

molecular velocity distribution
for particles inlevel i;

absolute = Maxwell-Boltzmann
distribution;
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and by a Grant from the Deutsche Forschungsgemeinschaft
under its program of research on the flow of real gases.
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Eucken factor F = mi/uc,;
dimensional relative velocity ;
perturbation of the distribution;
dimensional scattering cross sec-
tion;
Boltzmann constant ;
mean free path;
Maxwell-Boltzmann  distribu-
tion at the wall temperature;
molecular mass;
number density at x = 0;
gaspressureatx = 0,po=NokT;:
gas constant;
reflection operator;
partition function

0 = Y exp(~ EgkT);
total heat transfer in x direction
(dimensional);
wall temperature and tempera-
ture at x = 0 respectively;
wall velocity ;
peculiar velocity;
spatial coordinate;
dimensionless coordinate per-
pendicular to the plates;
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Zp collisional relaxation number ;

[ N T thermal accommodation coeffi-
cients for translational and in-
ternal energy respectively ;

Bili=1.2,3 Vvariational constants;

7, ratio of specific heats ;

5, plate separation (dimensional);

0, inverse Knudsen number § =§/1;

& dimensionless internal energy
& = E/kTy;

6, collisional scattering angle ;

Ay A Ay thermal conductivities

U gas viscosity ;

&, molecular  velocity  (dimen-
sional);

Pos mNO 5

T, temperature perturbation

t=|(T, = T)/T;

TRo relaxation time for the internal
degrees of freedom;

T, inverse of the total collision fre-
quency;

o, solid angle of scattering;

&, temperature jump coefficient.
INTRODUCTION

ALTHOUGH the kinetic theory of plane heat
conduction has been exhaustively treated for a
monatomic gas [1-5], the corresponding prob-
lem for a polyatomic gas has received con-
siderably less attention due to the complexity
of the molecular collision process and of the
molecule-wall interaction. Most work on the
polyatomic problem has been concerned with
the calculation of transport coefficients using the
Chapman-Enskog procedure on a suitable
kinetic equation [6,7] A notable exception
to this is the work of Hsu and Morse [8-10]
who have treated the full boundary value
problem with a generalization of Maxwell’s
boundary condition and with suitable models
of the collision term of the Wang Chang-
Uhlenbeck equation [11, 12]. The extent of
numerical computation necessary to achieve
quantitative results is discouraging.
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In light of recent work on the monatomic
problem [5], it seems that many of the more
cumbersome aspects of the problem may be
eliminated through the use of appropriate
variational techniques. In fact great generality
can be obtained from the outset, since there
need be no restriction to the form of the collision
operator and the boundary conditions used can
be quite general. In partjcular, with a variational
technique based on the integrodifferential form
of the equation, the heat transfer may be found
in a closed form which reduces to all known
limits correctly [S] Thus it appears that a
recalculation of the polyatomic heat transfer
could be useful.

In the following the boundary value problem
is formulated for the linearised Wang Chang-
Uhlenbeck equation [ 13] with general boundary
conditions and certain formal similarities with
the corresponding monatomic formulation are
noted. By exploiting these similarities, the
solution of the general problem can be shown
to be equivalent to making a certain quadratic
functional stationary. For the heat transfer
problem treated here, the stationary value of this
functional is related to heat transfer to the
boundary and can be approximately evaluated
with great accuracy by using an appropriate
trial function, Explicit expressions are given for
the heat transfer and the temperature jump
coefficient which agree with the monatomic
results previously given in the limit of vanishing
internal specific heat. Furthermore, the expres-
sion for the heat transfer reproduces correctly
the free molecular, near free molecular and
continuum results that are obtained from the
linearised equation.

BASIC EQUATIONS AND FORMULATION

In this section the full boundary value prob-
lem for the linearised Wang Chang—Uhlenbeck
equation is formulated with general boundary
conditions. A dilute gas of spherically symmetric
polyatomic molecules is considered in some
region Q of physical space bounded by the
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surface Q2. The molecules are treated semi-
quantum mechanically in the sense that the
internal energy of the particles is quantized but
the translational energy is treated classically.
To each internal quantum state, with internal
energy E, is assigned a velocity distribution
function f, The energy E, is a parameter which
completely specifies the internal state in this
approximation. The spatial and temporal evo-
lution of f; due to collisions is given by [13]

0 J
giﬁ +¢& 5§fi = 2 SUfefr,
-£6)i 1@ 0 dwdE,  FeQ (1)

where tildes denote dimensional quantities and,
in standard notation, § is the relative velocity
before collision, i’,‘} is the collision cross section,
which depends only on § and the scattering
angle 0 = §.§/d9’ due to the symmetry of the
molecules, and f, denotes f(§;) where primes
indicate post-collisional quantities. This form
of the equation, due to Wang Chang, Uhlenbeck
and de Boer [13], follows from microscopic
reversibility of the collisions due to time reversal
invariance of quantum mechanics in the absence
of degeneracy. This has been discussed in detail
by Waldmann [ 14, 15].

The boundary conditions to be matched to
equation (1) can be written as [16, 17]

|(& — up). n|fi(%;, &)
= Z f B (&' ™ &) f{%o E)(E — uo). n|dE
Crwrn<o  300Q, (E—up).n>0 (2

where u;, denotes the wall velocity at %, and n
is the normal pointing into the gas. For a non-
porous wall, the positive kernel B;_,; (assumed
to be independent of the state of the gas) is
normalized :

. BLETodE=1
i (§—~uy).n>0

X0e0Q, (¢ —up).n<0 3)

thus we may write (§{ — #y). 2 = v. n where v
is the peculiar velocity of the gas as at the wall.
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The reciprocity of B;_,; is written as

|v'. n|M, (&)B;_i(E~8)=|v. n|M,,($)
Bij(—¢—> —0):XedQ:0'n>0:0"n<0
4

and follows also from the time reversal in-
variance of quantum mechanics in the absence of
degeneracy, as discussed by Kuster [18] A
consequence of reciprocity and non-porosity
is that the velocity distribution of a gas in equili-
brium with the wall is unchanged by collisions
with the wall. Thus,

|o. n|M,(§) = 3 [ B;,€~0)lv'. niM,, (&) dE';

Jv m<0

%,60Q;v.n>0 (5)

where
2

mv
&= N,2nRT,) 205 exp |-
M, @)= N,QrRT,) 05" exp [mw

E; E
— =5 —
xT ;0w ‘s eXp [ kTL] (6)

is a Maxwell-Boltzmann distribution with the
temperature and velocity of the wall

The kernel B;_, (&' — £) must be specified by
the details of the wall interaction at the molecular
level In the absence of a rigorous theory, various
specialized assumptions are made; the most
common being Maxwell’s assumption of partial
diffuse and specular reflection. When extended
to allow for internal degrees of freedom B/
becomes

2

B = 0@+ N,Q,, '2nRT,) " exp [—

2RT,
N [
o LA n
+ (1 - aint)an+6iij(2ngTw)—%
S
X exp B |v. n|

+ (1 - an+) (Zimé[fl - § + 2"(" v)]

_ E.
lexpl — =L
xQ p[ kT,
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+ (1 — opy) (0= a) 5.']'5[:/ ~ &+ 2n
x (n.v)] (7

where N, is fixed by the normalization as
(Qn/RT,)*, and o, and a4 are the thermal
accommodation coefficients for the internal
and translational energy respectively.

If the distribution f; can be considered to be a
small deviation from some basic Maxwell-
Boltzmann distribution f,, we may write

fi=fol +h) |h] <1 ()

where

Y — —1.=~c2g 52
Jo, = NoRuRT,) 3Q; e~ "% ¢* = AT

E.
.= t = s
6= g Qo= Le ©)
and the constants N, and T, represent some
appropriately chosen density and temperature
of the gas. With this linearization we have

{.g—;l:Noul fSQ
2 R
Lh= YERE S8y L hy]

Qon

Kt

gli4g,0) dwde,  (10)

with the boundary conditions
hi+ = ho + Ah— v.n> 0 fosaQ
Ah™ =Y [ A4, (& > HhLE)dd

jv.n <0

Ajei = [|v. 1lfo (BT Bio k& - Ol -nlfo (&)
(11)

v.n>0

and h,, is the known source term

ho, = 2§ AjadE > £ dg — 1.

jev.n <o

(12)

By linearizing the kernel A;,; in the small
parameters [(T,, — Tp)/Ty] and u,, the kernel
A;_,; depends only on the parameters of the basic
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distribution f,. As a result, the inhomogeneous
term can be written as

hs, = Vg, — Ay,

T, - T dy 1
Yo, = O(Cz—%+8-—‘”+~—u.v
f T; Yok RT, ™
where ¢, is the internal specific heat of the gas
o _ .
7=% IZ ge b,

It is noted here that the introduction of the
internal degrees of freedom in this spherically
symmetric, non-degenerate approximation has
little effect on the formulation as compared
to the monatomic problem. The principal
differences are that now the total energy is a
collision invariant

Lic* +¢)=0 (14)
and the inhomogeneous boundary term now
contains a term proportional to the internal
energy.

THE VARIATIONAL PRINCIPLE

Recently a variational principle has been used
in conjunction with the integrodifferential form
of the linearized Boltzmann equation and general
boundary conditions which is capable of giving
extremely accurate results for certain macro-
scopic quantities of physical interest [5, 19]. This
technique has the further advantage of being
extremely easy to apply and gives simple,
closed form results for the quantity in question
valid throughout the transition regime. The
principal disadvantage seems to be that the
technique is limited to problems in which the
adjoint equation and adjoint boundary con-
ditions are simply related to the direct equation
and direct boundary conditions. This latter
restriction can be removed, however, by con-
sidering the method of Roussopolous [20-22].
In the heat transfer problem to be considered
here the two methods are identical
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The extension of this technique to the poly-
atomic problem formulated in the preceding
section is quite direct. In particular, with the
following inner products defined:

—c2—g

(:9) = 3 [ de ™5 J(0) 94X Lfig] =Jad%(f0)
o (15)
(.90 = £ ] de 5| eonl f(00):
Lgls= [ dsfigds  (16)
2

we have, for arbitrary functions f(%,¢) and
g(%, c):

[RID — L)f,g] = [fRD - L)g]l + [¢".Rf "]

~[Rg™.f"1s (7
[ARf g]s = [, ARgls (18)

where R is the reflection operator
Rfi%,c) = %, —¢) (19)

and D = ¢.(8/0%). In arriving at equation (17),
use was made of the self-adjointness of Lin the
inner product (15) due to the relation [15]

9’I50.9) = 7°1i@. 0) (20)
and the rotational invariance of L, which follows
from the assumption of spherical symmetry of the
particles. Equation (18) follows directly from
reciprocity of the boundary operator and is
analogous to the result given by Cercignani
[16, 17]. The boundary terms on the right hand
side of equation (15) appear because fand g do
not in general satisfy the boundary conditions.

The utility of these relations is that the functional
J(h) defined as

J(R) = [R(D — L)k, k] + [A* — AR~ — 2h,,
Rh™ ]y (21
has the variation éJ given by
6J = 2[R(D — L)h,6h] + 2[h* — AR~ — h,,
R6R ], (22)
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Thus solving (10) with the boundary conditions
(11) is equivalent to making J(h) stationary.
Furthermore the stationary value attained by J
when h = h has been shown to be related to
certain quantities of physical interest [19]. The
practical use of such a result is that the stationary
condition

6J =0 (23)

can be used to obtain a “best fit” of adjustable
parameters in a suitable trial function such that
the stationary value of J, and thus the macro-
scopic quantities associated with it, can be
accurately predicted. Since the inhomogeneous
term of equation (13) differs from the monatomic
case only in the addition of the internal energy,
it is clear from [19] that the stationary value of
J in this case is related to the total heat transfer
to the body.

APPLICATION TO PLANE HEAT TRANSFER

The problem of polyatomic heat transfer
between parallel plates has been previously
treated by means of a half-range moment method
[8] and later using a variational technique in con-
junction with a suitable kinetic model for the
polyatomic collision process [9, 10]. This latter
work includes a complete numerical study of the
boundary value problem including temperature
and density profiles as well as a parametric
study of the relaxation properties of the gas and
a good comparison of the calculated heat
transfer with experiment [23]. Good agreement
is found for the heat transfer but the density,
which is not related to the stationary value of the
functional used, is less well described. It is
the purpose of the present work to present an
analytically manageable result for the total
heat transfer which accurately describes the
transition regime in an attempt to overcome
some the inherent numerical complications of
the previous formulations, Detailed numerical
evaluation and comparison with experiment will
not be presented here,

We consider two parallel, stationary plates
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in the planes x = + 6/2 with the temperatures
T: = Ty(1 F 1);t = AT'T, < 1. Neglecting all
variations in the directions parallel to the
plates leads to the one dimensional equations:

oh 0,0
C, ol Ih Xg [—— 5’5] (24)

h* =hy+ Ah™ x = — gsgncx (25)
wheresgn (4 x%) = 4 1anddistanceis measured
in units of the mean free path [ and J is to be
interpreted as an inverse Knudsen number based
on ! and the dimensional plate separation. In the
collision term L gl is non-dimensionalized
by Nol(2RT;)"*. The constants N, and T, are
chosen to be the density and temperature of the
gas at x =0, and, in this antisymmetrical
problem, represent the average density and
temperature.

Although the condition on the perturbed
distribution at the plates is generally given by the
linearized version of equation (7), in this work
a slightly different method of introducing
thermal accommodation coefficients is used,
based on a recent formulation due to Cercignani
and co-workers [3, 24] The effects of the
different forms of the boundary conditions
have been shown to be slight and probably not
experimentally detectable in the heat transfer [5].
In this formulation it is assumed that the
perturbed distribution emitted from the wall
may be written as

=%+ The® = 2) + (ai - %)

x = (26)

— 558 cy

The coefficients are determined by the conserva-
vation of mass at the solid boundary and by the
definitions of the accommodation coefficients:
|n.u®| = |n. u™|
(1 - atr) Q:!rl = ?;lt - atréx
(1 — o) Q:gt = Q:ﬁ — Oine Qine

27
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Here ™™ is the velocity of the stream approaching
the wall, Ji" is the translational energy trans-
ported into the wall, %" is the corresponding
outgoing energy flux and §Y is the translational
energy that would be carried by an emerging
stream with the wall temperature. The full
boundary condition may now be written

hy, = ol — D+ syt — ¢/k)]

2 —&j 2 —
Ah™ :Vze [dee |c'.n|{1 +Q-££'—'»)
T 2

o Cn< 0

) (=2 =)+ (1 - >5(—“>

k

In the limit &, = o, = 1 this gives the correct
result for diffuse emission. The free molecular
distribution may be obtained by solving a simple
integral equation in this planar geometry as

(28)

FM _. (Z”, 2 _ aint
h; —r[——z (c 2)+——&2_

Xye int

_G
&= |sEne

which is identical to that obtained with
Maxwell’s assumption. Furthermore the nearly
free molecular distribution may be obtained by
Knudsen iteration [1] on equation (24) with
the free molecular result as the zeroth iterate
and is given by

(29)

o
h, = C;l (x+ Esgncx>LhF‘“ + ™ —izlt

(c? — 2,sgn ¢ x Lh™) (%;%>(c2 —2) sgn ¢,

- %tr

1l -«

k . .
- Jr (e; — ci/k, sgn ¢ LK™ <v—’i'>
C, 2 - Otim

<
X P 7{ sgn c,.

v

(30)
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Now with the total heat transfer defined as

Or. =20 (Tz—é- + E) ¢dE (31

we have, in terms of the inner product (15),

Or. = PoRRTy) [cx (Cz —3te- %)’ h]
(32)

swhere p,, is the pressure at x = 0. Thus the heat
transfer to the wall in this limit is

+
0, = O™ <1 +%b“16> <1 (33)
27
5 = po2 AT 5 b (34)
_ Oy £lv_ int
b= e turog,
I =t (™, Li™). (36)

In the continuum limit the solution to (24)
is independent of the boundary conditions
and is given by the Chapman-Enskog theory
as

asy 200\( , s _c_f,d 2t
h,-y_—(—3—>(c —-2+e,-—k> a,{c)cxé

(37)
Llao)e,] = . (c —3+e- —“,;) (38)

with the auxiliary condition
(afo, c) =0 (39)

and is related to the total thermal conductivity
by the relation

Ap = — Nok(2 RTy)* [a,(c)cx, Cx (c2 -3+¢

Now a trial function which contains a linear
combination of both the free molecular and
continuum solutions will surely give results for
the heat transfer which are correct in both limits
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and experience has shown that this is also true
for the full transition regime as well. Thus we
choose

i

h; = Bx ((22 —3+e— %) + Baafc) + B

ey 2 int o C_:)
[5———— = (c 2) + T ar o (s, 7 >] sgn ¢,

(41)

and use the stationary condition 8J =0 to
obtaina 3 x 3 system of linear equations for the
coefficients. The inclusion of the accommoda-
tion coefficients in the trial function enables us
to retain the correct free molecular solution
without introducing separate variational con-
stants for the internal and translational energies.

Using equation (41) in (22) leads to the system

c
- Bl (alr + ﬁaim) o
+ Bo[3712 — o) + 3T (2 — 0]

+ ﬂ3 2 (atr + aintzi;é) =2t (alr + %“in)

(42.)
By 00J (2 — o) + JTH2 — o))
¥ ﬂl{%h +4 [(1 )22
+ (1 = ) JA? ?] _20(J, + JT)}
+ B [20 J1u+ %, J%) — 30b]
= 2ty I, + i JE) (42.b)

¢
ﬂl 0 (atr + ﬁ%m)
+ 1[50 1o, + Jtoy,) — 20b]

o2 a2, ¢
2 i int _-l)_ — é.
+ﬁ3 [(2—atr+2_aim2k) 7':51]

o2 o2, o
— 2 tr int —IJ
f [2 - % T 2 — “intZk]

(42.c)
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where we have made the further definitions

2o

i

e”‘si
DY~
1T 2.0,

J, = Z % je“’ ¢ [afo)] de.

f 0

J, = e~ ¢® afc)dc

(43.a)

e < c* ¢ a;(c)dc (43.b)

ot——,8 O3

43.)

Using (32) we obtain the heat transfer, norma-
lized to free molecular conditions, in terms of
the variational constants directly from the trial
function as

Q ngm" =3 U, + TN B+ B3 (44)

and, after some tedious algebra to obtain the
coefficients B, and B, this becomes

N+36
- 45
Q N + Mé + PS> (43)
where
N = 4J,+JY)
3= Jmb7HUJ, + T
9 J, L G]
- S - 46.
[16(1, T bt @6

[9 _J_2_+§]
362 — Jnlb(J, +JY) 16U, + J1)* 2.

M= 367 — Jrl(J, + J%)
(46.b)
3b
L . 46.
Perw oe)

G=(,+JID7? [Jf(l — %)

2k c _
+ —I‘P{d (1 - O(int) + (atr + Eléaint> !

v

0,2 = a) + £ Q2 — )] 2]. (46.4)
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The normalized heat flux given by (45)
reduces to the correct values in the limits of
large and small inverse Knudsen number.
Furthermore the correct initial slope to the heat
transfer (or the nearly free molecular correction)
is obtained. Thus defining

im 47)

leads to

s

Jr
=~_p 1] 48
A (48)
in agreement with the result of equation (30).
In the limit of vanishing internal specific heat
(ci/k — 0), equation (45) reduces to the result
previously given for the monatomic gas.

THE TEMPERATURE JUMP

In many practical applications, it is possible
to extend the range of validity of the continuum
equations by relaxing the “no slip” condition
at a solid boundary. In this case it is necessary
to have a kinetic treatment of the appropriate
slip coefficients. Calculation of these quantities
for a monatomic gas is reasonably complete,
but the situation for the polyatomic has been
less completely treated. It has been shown in a re-
cent treatment, however, that through a redefini-
tion of certain inner products and the collisional
invariants, the results previously developed for
monatomic gas through use of variational
principles may be used directly for polyatomic
gases and gas mixtures [25]. Although in shear
flow problems it appears the effect of the internal
degrees of freedom is slight [7], the transport
of energy between the translational and internal
modes and the transport of the internal energy
itself can have a significant effect in problems
in which a temperature gradient exists with a
component normal to the solid boundary.

The temperature jump coefficient & is usually
defined implicitly through the relation

T2y
i (— g) - T, _adl

& W
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where /is the mean free path. With this definition
the coefficient of /5 in an expansion of the ratio
of @ to its continuum value in powers of [/J is
simply 2&. Thus & is obtained from equation
45) as

J, .G
213( ! ){16(.] 17 +5} G0)

where the mean free path has been left arbitrary
and the terms J,, J¥, J, and G have been de-
fined in equations (43) and (46). From equation
(40) it is noted that J, and J¥ may be expressed
in terms of the translational and internal thermal
conductivities as

Joo 3 A}
L=
4Nk \2RT,
YL
4Nk \22T,) -

Thus introducing the Eucken factors F,,, F,, we
have

Jt =

(51)

_ , 2k
G =FT2{Ft2r(1 atr)+ 1nt C' ( _aint)
c -1
+ <atr + ﬁ( aint) [Ftr (2 - (xlr)
+ Fint (2 - aim)] 2} (52)
mj, mi;
F = L F = —int, F = F inte
tr ﬂcv, int UC, > T tr + Fmt (53)

In first Chapman-Enskog approximation, a{c)
isgiven by

afc) = ay(c* — 5/2) + ay(e; — ci/k) (54)
where
oA 1
! 5Nok QRT,)Y
2,
int (55)

= AN ATy
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so that the integral J, may be evaluated as
Jy= Bi B+ 42, ,](Nokrl QRT)". (56)

Now choosing the mean free path

_uf =y
 po\24T,

the temperature slip may be written in terms of
the Eucken numbers and the internal heat
capacity as

(57)

_i__l_ E%_ 2 +i’f

T2Fy - D25 " &
where 7y is the ratio of specific heats. Equation
(58), in conjunction with experimental de-
terminations of the total Eucken number and
the translational Eucken number (e.g from
thermal transpiration data [26]), could serve

as an analytical tool in more accurate determina-
tions of the thermal accommodation coefficients,

F2
an.+7TG} (58)

USE OF A MODEL EQUATION

Although the results given in equations (45)
and (46) are completely general, the appearance
of the half range bracket integral I of equation
(36) makes it necessary to use a modelled
collision operator to perform calculations due
to the complexity of the collision cross sections.
The hierarchy of models of Hanson and Morse
[12] is capable of describing collisions between
molecules toarbitraryaccuracy with the assump-
tion of constant collision frequency. It is well
known that constant collision frequency models
for monatomic gases in lowest approximation
fail to give the correct Prandtl number of the
gas, but that an appropriate definition of the
mean free path minimizes this discrepancy [4, 5].
The situation for a polyatomic gas is naturally
somewhat more complex and it is necessary
to truncate the expansion of the collision opera-
tor at the next highest order to describe correctly
the transport properties, at least in the sense of
the first Chapman-Enskog approximation. This
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has been discussed in detail elsewhere [12, 27].
At this level the gas may be described in terms
of four dimensionless groups. For the heat
transfer problem these are chosen to be (1) ci/
the dimensionless internal specific heat (2) z,
the collisional relaxation number (to the defined
below) (3) the total Eucken number and (4) the
inverse Knudsen number based on the plate
separation. Equation (24) can now be rewritten
as

oh

Cx& = Lh

(59)

where L is the modelled collision operator

)

£y =(1,h) +3( -
2¢, 1\ 5
(-5 et o
1
5(‘?)[ P
-3) (o= )
+ ——] l& — %
ee? —%){g % 1) (e~ e
21 c
+§Z|:Cx (E,- —E),h,]}
N O e

and, with the experimental relaxation time tg,
the collision relaxation number has been defined
as

1-—

(61)

i - 3 /
Ze = TR/Te = 2 PoTrR/H

where 7, is chosen to be 34/p, in accord with the
total collision frequency as given by the model

J. W. CIPOLLA, JR.

equation at this level. Further the quantity K is
given by

I_Qc_,",l+2cf, 4+50,",1 N
9 kz. 3k\9 9kz

4 5c1\c,
<9+§EZ>EFT"

and the mean free path | has been chosen in
terms of the gas viscosity as
__4 u 1
T 3p0 QAT

(62)

(63)

The Chapman-Enskog solution is correctly
given, in first approximation, in terms of the
model parameters as

.{C)—‘h(c “_)+a2(3 _Cu/) (64)
where .
K416l
a, = 3k (65)
e 4+541 8cl
9 9k 45 k z2
4 561\ 81
979%z) 15z
%2 4 5cl sa1 (0
___|._4_I(_,_~
9 9k z 45 k 22

and are related to the translational and internal
thermal conductivities. Now the integrals ap-
pearing in the heat transfer may be explicitly
computed :

15 3nt ¢
s * 6
Jy = 1675 a;, Ji 8 k (67)
13 cl
Ja ?a%‘i'z 3 (68)
2 i
I = % E 1_91 _Z
2—0o/) |97 kz, 4
+§—v‘11 &y Pint )
3nkz\2—a) \2 — tiy
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With these expressions used in equations (46)
in conjunction with equation (45), the heat
transfer may be evaluated for arbitrary inverse
Knudsen number as a function of the collision
relaxation number, the internal specific heat
and the total Eucken number of the gas.

CONCLUSIONS

A variational principle has been used on the
full linearized Wang Chang-Uhlenbeck equation
in order to describe the heat conducted by a
polyatomic gas between two parallel plates.
The result is a closed form expression rational
in the inverse Knudsen number which correctly
gives the free molecular, near free molecular,
and continuum heat transfer. In addition a
reasonable result has been derived for the
temperature jump coefficient which agrees with
the monatomic limits and with an independent
calculation using the integral form of the
equation.

The heat transfer found by the variational
method has been expressed in terms of the
Chapman-Enskog transport coefficients, in first
approximation, by using a modelled collision
operator. It is hoped that this expression, in
conjunction with experimental values of the gas
properties, could be useful in studies of surface
accommodation.
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TRANSFERT THERMIQUE ET SAUT DE TEMPERATURE DANS UN GAZ
POLYATOMIQUE

Résumé—Afin d’évaluer la chaleur conduite au travers d’un gaz polyatomique entre des plaques paralléles.
on utilise un pricipe variationnel basé sur la forme intrégro-différentielle de 1'équation linéarisée de Wang-
Chang Uhlenbeck avec des conditions aux limites générales. On donne une expression de forme analytique
précise du transfert thermique valable pour tous les degrés de raréfaction rationnelle en fonction de I'inverse
du nombre de Knudsen avec pour parameétres les coefficients d’accomodation thermique. la chaleur
spécifique des modes internes, les moments de la solution de Chapman Enskog et les intégrales crochets
de la solution moléculaire libre. Le coefficient du saut de température est obtenu 2 partir du développement
de haute densité du flux thermique ¢t dépend des coefficients d’accomodation thermique, de la chaleur
spécifique interne et des moments de la solution de Chapman Enskog Dans la limite d’evanouissement
de la chaleur spécifique interne, 4 la fois le transfert thermique et le saut de température se raménent aux
résultats donnés antéricurement pour le gaz monoatomique.

WARMEUBERTRAGUNG UND TEMPERATURSPRUNG IN EINEM
MEHRATOMIGEN GAS

Zusammenfassung—Ein Variationsprinzip, beruhend auf der Integro-Differential-Form der linearisierten
Wang-Chang-Uhlenbeck-Gleichung, mit allgemeinen Randbedingungen. wurde zum Berechnen der
Wirmeleitung durch ein mehratomiges Gas zwischen parallelen Platten benutzt. Das Ergebnis ist ein
genauer, geschlossener Ausdruck fiirr die Warmeiibertragung, giiltig fiir alle Verdiinnungsgrade, rational
in der inversen Knudsenzahl und parametrisiert durch die thermischen Akkommodationskoeffizienten,
die Wirmekapazitiit der inneren Zustinde, die Gesamtmomente aus der Chapman-Enskog-Losung
und Halb-Bereichs-Stiitzintegrale aus der Losung fiir frei bewegliche Molekiile. Der Temperatursprung-
koeffizient ist gewonnen aus der hohen Dichtezunahme infolge des Warmestromes und ist abhingig
von den thermischen Akkommodationskoeffizienten. der inneren Wirmekapazitit und den Momenten
aus der Chapman-Enskog-Losung.

Im Grenzfall des Verschwindens der inneren spezifischen Warme reduzieren sich die Ergebnisse fiir
die Wirmeiibertragung und den Temperatursprung auf die frither bestimmten Ergebnisse fir das ein-

atomige Gas.

[IEPEHOC TEIIJIA U TEMIOEPATYPHBLII CKAUOK B MHOIOATOMHOM
'A3E

Andoranua—/I1A OHEHKU KOJMYECTBA TeMNia, IepefaHHOr0 TENJONPOBOJHOCTLIO 4Yepes
paspe;KeHHBII Ta3, 3aKJIIOYEHHBIT MeAy HapalelbHBIMH IJACTHHAMM, MCHOIb3yeTcs
BAPHALUOHHHN HPMHIUN pelIeHNs JHHEeApU30BAHHOTO HHTerpo-fuddepeHnuanbHOro ypa-
BHeHUA Boub-YsHb-Yaenberxa ¢ obmwumy rpaHuyHbiMu ycuoBusamu. Ilonyveno BripaskeHne
JUIA MOTOKA TeMia, CrpaBeljiuBoe JIIIA BCEX CTeNeHel paspexkeHud, T.e. KA noGux (Kn)-!,
H cojepiailee B KayecTBe I1apaMeTpoB KOIPPUIMEHTH TepMUYECKON aAKKOMOJAlUK
TEIIIOEMKOCTD 33 CYET BHYTPEHHUX CTemeHell cBOGONBI, NMOJHHI HAalop MOMEHTOB QYHKINH
pachpefeseHns, COMNIACHO MpoUefype pelileHns YenMeHa-dHCKOTA, W DA HHTETPAJIOB
CTOJIKHOBeHMIt. BrlpanieHue AJIA TeMIEepATYPHOTO CHKAYKA TIOJY4YEHO PABJIOMKEHUEM BEIpa-
MEHUA JJIA TENJIOBOr0 HOTOKA B PAM 10 IJIOTHOCTH M 3ABHCUT OT KOQQUIMEHTOB TepMH-
YeCKOHl AKKOMONAIMHU, TEIIOEMKOCTH 3a CUET BHYTPEHHUX cTreneHe#t ¢BOGOORI M MOMEHTOB
pemenusa Yenmena-duckora, B npegese mpu cTpeMIIeHUH TEILIOEMKOCTH 3 CYET BHYTPEHHUX
creneneit CBOOOAH K HYJIO, BHpParKeHMs KaK JJIS TelJOBOr0 NOTOKA, Tak M JJA TeMnepa-
TYPHOTO CKAYKa, COBMAJAIT C AHAIOIMYHBIMY BHPAKEHHAMU B CiyYae OXHOATOMHOrO rasa.



